Callan–Symanzik equation and a perfect 100 % record in predicting major crashes on $SPX

Callan–Symanzik equation applicability to predict major $SPX crashes

Callan–Symanzik equation

as we all know , in quantum electrodynamics the Callan–Symanzik equation takes the form

\left[M\frac{\partial }{\partial M}+\beta(e)\frac{\partial }{\partial e}+n\gamma_2 +m\gamma_3\right]G^{(n,m)}(x_1,x_2,\ldots,x_n;M,e)=0

being n and m the number of electrons and photons respectively.

modifying n for “Wicksellian interest rate” ( refer to Ben S. Bernanke ‘s blog post  Why are interest rates so low? dated  March 30, 2015 6:01am, , to understand the dynamics of Wicksellian interest rate )

, and m for the 

 , i’e the time elapsed between the worst 20 day percentage changes in $SPX ( S&P 500 cash index) , 

note  is the golden ratio multiplied by the prior $SPX crash date expressed in UNIX time-stamp format.

Below were the prior instances where the above modified Callan–Symanzik equation predicted the $SPX upcoming crashes in percentage terms ( 20-day non interleaving ) , since 1950 , mind you it has a perfect 100 % record thus far …

Date $SPX t+20%
31-Mar-16 ~2066 -??
11-Jul-11 1319.49 -15.16
28-Jan-09 874.09 -13.87
31-Oct-08 968.75 -15.75
29-Sep-08 1106.42 -23.27
29-Aug-08 1282.83 -13.75
26-Aug-02 947.95 -13.57
17-Jun-02 1036.17 -13.05
15-Aug-01 1178.02 -13.75
15-Feb-01 1326.61 -13.27
03-Aug-98 1112.44 -13.95
26-Jul-90 355.91 -13.73
21-Sep-87 310.54 -27.6
07-Nov-74 75.21 -13.56
24-Jul-74 84.99 -13.51
11-Jun-74 92.28 -13.32
26-Oct-73 111.38 -13.29
23-Apr-70 83.04 -13.1
30-Apr-62 65.24 -14.93

t+20 % , is the change in the next 20 trading days in percentage terms ..

ps: APR-FOOL :) 

ps: #FWIW the listed dates above are the worst 20-day non-interleaving performances for $SPX

Leave a Reply