paststat loader
as on: Sep-18 10:00

$CANF 1.34 0.05 3.88%

Can-Fite Biopharma Ltd

$CANF Open, High, Low, Close, Volume 1
Open 1.27 Last 1.34
High 1.34 Low 1.28
Previous Close 1.29 Current Streak 2U
Change 0.05 Change % 3.88
Volume 7155 Avg Volume(3M) 48499
$CANF 52 Week High/Low , Month High/Low 1
52 Week High 2.75 52 Week Low 1.12
52 Week High % -51.27 52 Week Low % 19.64
20 Day High 1.38 20 Day Low 1.21
20 Day High % -2.90 20 Day Low % 10.74
$CANF Moving Averages 1
SMA 20 1.31 2.29
SMA 50 1.25 7.20
SMA 200 1.47 -8.84
$CANF Bollinger Band Values 2
Upper Bollinger Band 1.38
Lower Bollinger Band 1.24
$CANF Daily Pivot Point Values 2
Resistance Level R3 1.42
Resistance Level R2 1.36
Resistance Level R1 1.33
Pivot Point PP 1.30
Support Level S1 1.27
Support Level S2 1.24
Support Level S3 1.18
$CANF Fibonacci Retracements & Extensions 2
2.618 Fibonacci Extensions Level 1.49
1.618 Fibonacci Extensions Level 1.43
1.382 Fibonacci Extensions Level 1.41
0.382 Fibonacci Retracement Level 1.25
0.618 Fibonacci Retracement Level 1.23
1.000 Fibonacci Retracement Level 1.21
$CANF DeMark Pivot Points 2
DeMark Resistance Level 1.31
DeMark Pivot Point 1.29
DeMark Support Level 1.25
$CANF Fibonacci Retracement Levels from 52 Week Low 2
61.8% Fibonacci Retracement from 52 Week Low 2.13
50% Fibonacci Retracement from 52 Week Low 1.94
38.2% Fibonacci Retracement from 52 Week Low 1.74
$CANF Stock Performance(%) 1
One Week Change % 1.49
One Month Change % 4.69
3 Months Change % 10.74
6 Months Change % -7.59
One Year Change % -20.24
Year-to-Date Change % -9.47
$CANF Alpha, Beta , Correlation & Volatility 2
Alpha -25.96
Beta 0.14
Standard Deviation (1 Year) 57.27
1 Year Correlation with S&P 500 Index 0.03
1 Month Standard Deviation 9.17
1 Month Correlation with S&P 500 Index 0.00
$CANF Relative Performance 1
One Day Relative Performance % -0.78
One Week Relative Performance % -0.43
One Month Relative Performance % 0.73
3 Months Relative Performance % 4.09
6 Months Relative Performance % -14.10
One Year Relative Performance % -33.36
1 Calculated on 20 Minutes Delayed Data , calculated though out the regular trading hours 2 Calculated on Previous Day's OHLC Data .
$CANF 1.34 0.05 3.88%
Can-Fite Biopharma Ltd

  • Signal : Technical strategy / trading signal
  • Bias : Long or short, based on the historical backtesting report, arrived at summing all the change% values and if negative usually going short was profitable, if positive going long was profitable
  • # : Number of trades generated by the trading strategy on a stock over the last four years ( our default backtest period)
  • %Wins : Number of winning trades expressed as percentage
  • Avg% : The average profit per trade in percentage for all the trades in the last four years
  • Med% : The median profit per trade in percentage
  • OAPF : Outlier Adjusted Prof Factor , is the system’s gross profit ( minus the larget winning trade) in $ terms divided by gross loss in $ terms. Look for systems that have a profit factor of 2.5, or higher
  • AWT% : The average profit per winning trades for all the winning trades in the last four years
  • ALT% : The average profit per losing trades for all the losing trades in the last four years
  • Payoff : Ratio of Avg Win / Avg Loss %
  • MLT% : Maximum Loss Trade (%)
  • T-Test : square root (n) * (average trade %/ standard deviation of trades %) , t-test of 2.1 for a sample size of 25, is considered to be statistically significant
  • backtesting period : default backtesting period is 4 year's , if the stock is trading then , other wise since it's listing
Signal Bias # %Wins Avg% Med% OAPF AWT% ALT% Payoff MLT% T-Test
Any Random Day Long 1007 42 0.07 0.00 0.90 3.63 -2.52 1.44 -60.29 0.37
SPY Above 20 SMA Long 684 42 0.34 0.00 1.11 4.04 -2.38 1.70 -25.51 1.41
SPY Above 50 SMA Long 735 42 0.06 0.00 0.94 3.31 -2.36 1.40 -19.77 0.36
SPY Above 200 SMA Short 900 57 0.04 0.00 1.00 2.40 -3.19 0.75 -51.62 0.25
Long Red Candle Long 191 50 0.65 0.27 1.44 3.35 -2.07 1.62 -9.44 2.36
Slow S(14) %K Crossed Below %D Long 130 45 0.21 0.00 0.92 2.70 -1.87 1.44 -6.51 0.78
3rd Quarter Long 254 44 0.44 0.00 0.96 4.04 -2.39 1.69 -25.51 0.88
Monday Short 187 58 0.22 0.00 1.26 2.59 -3.10 0.84 -23.51 0.69
September Long 81 39 1.37 -0.56 1.00 7.95 -2.93 2.71 -25.51 0.93
Today -1% Long 400 49 0.61 0.00 1.22 3.63 -2.29 1.59 -19.79 1.98
Open -1% Long 416 46 0.44 0.00 1.04 3.69 -2.35 1.57 -19.79 1.49
Open -2% Long 289 47 0.63 0.00 1.10 4.06 -2.47 1.64 -19.79 1.55
Two Week -5% Long 336 44 0.43 0.00 1.03 3.91 -2.40 1.63 -11.83 1.20
Below SMA 20 Long 637 43 0.22 0.00 0.99 3.32 -2.18 1.52 -19.77 0.99
Crossed below SMA 20 Long 65 49 0.26 0.00 1.00 2.29 -1.71 1.34 -6.63 0.76
Above SMA 50 Short 326 58 0.25 -0.41 1.04 3.30 -4.08 0.81 -49.39 0.68
Below SMA 200 Long 794 42 0.23 0.00 1.09 3.30 -2.06 1.60 -19.77 1.22
Close below S1 Long 220 48 0.35 0.00 1.17 2.98 -2.08 1.43 -11.83 1.51
Outside Day Short 107 62 0.63 -0.64 1.61 2.61 -2.70 0.97 -14.16 1.70
$CANF 1.34 0.05 3.88%
Can-Fite Biopharma Ltd

  • Signal : Technical strategy / trading signal
  • Bias : Long or short, based on the historical backtesting report, arrived at summing all the change% values and if negative usually going short was profitable, if positive going long was profitable
  • # : Number of trades generated by the trading strategy on a stock over the last four years ( our default backtest period)
  • %Wins : Number of winning trades expressed as percentage
  • Avg% : The average profit per trade in percentage for all the trades in the last four years
  • Med% : The median profit per trade in percentage
  • OAPF : Outlier Adjusted Prof Factor , is the system’s gross profit ( minus the larget winning trade) in $ terms divided by gross loss in $ terms. Look for systems that have a profit factor of 2.5, or higher
  • AWT% : The average profit per winning trades for all the winning trades in the last four years
  • ALT% : The average profit per losing trades for all the losing trades in the last four years
  • Payoff : Ratio of Avg Win / Avg Loss %
  • MLT% : Maximum Loss Trade (%)
  • T-Test : square root (n) * (average trade %/ standard deviation of trades %) , t-test of 2.1 for a sample size of 25, is considered to be statistically significant
  • backtesting period : default backtesting period is 4 year's , if the stock is trading then , other wise since it's listing
Signal Bias # %Wins Avg% Med% OAPF AWT% ALT% Payoff MLT% T-Test
Any Random Day Short 1007 61 0.43 -0.47 1.43 2.57 -3.00 0.86 -37.82 3.32
SPY Above 20 SMA Short 684 61 0.33 -0.46 1.30 2.47 -3.10 0.80 -37.82 2.09
SPY Above 50 SMA Short 735 62 0.46 -0.50 1.51 2.42 -2.85 0.85 -19.52 3.35
SPY Above 200 SMA Short 900 61 0.45 -0.46 1.44 2.43 -2.78 0.87 -19.52 3.67
Long Red Candle Short 191 59 0.32 0.00 1.28 2.68 -3.16 0.85 -13.64 1.14
Slow S(14) %K Crossed Below %D Short 130 63 0.42 -0.60 1.67 1.96 -2.29 0.86 -5.81 1.73
3rd Quarter Short 254 58 0.26 0.00 1.22 2.58 -3.02 0.85 -37.82 0.91
Monday Short 187 63 0.92 -0.70 2.12 3.01 -2.74 1.10 -19.52 3.01
September Short 81 61 0.55 -0.58 1.23 3.60 -4.38 0.82 -37.82 0.72
Today -1% Short 400 57 0.27 0.00 1.31 2.58 -2.84 0.91 -37.82 1.32
Open -1% Short 416 56 0.28 0.00 1.26 2.66 -2.88 0.92 -37.82 1.38
Open -2% Short 289 57 0.31 0.00 1.23 2.80 -3.11 0.90 -37.82 1.19
Two Week -5% Short 336 59 0.45 -0.49 1.54 2.74 -2.96 0.93 -37.82 1.97
Below SMA 20 Short 637 60 0.31 -0.41 1.34 2.28 -2.76 0.83 -37.82 2.12
Crossed below SMA 20 Short 65 63 0.34 -0.44 1.09 2.05 -2.58 0.79 -10.10 0.92
Above SMA 50 Short 326 63 0.80 -0.79 1.60 3.24 -3.38 0.96 -23.29 3.08
Below SMA 200 Short 794 61 0.32 -0.43 1.32 2.27 -2.82 0.80 -37.82 2.40
Close below S1 Short 220 56 0.22 0.00 1.25 2.44 -2.66 0.92 -10.10 0.93
Outside Day Short 107 68 1.10 -0.70 2.85 2.58 -2.07 1.25 -7.87 3.52
$CANF 1.34 0.05 3.88%
Can-Fite Biopharma Ltd
Month to Date : 0.06 4.67%
  • Month : Month
  • # : Number of trades generated , since 1990 ( our default backtest period)
  • Wins : Number of winning trades
  • Losses : Number of losing trades
  • %Wins : Number of winning trades expressed as percentage
  • Avg% : The average profit per trade in percentage for all the trades in the last four years
  • Med% : The median profit per trade in percentage
  • AWT% : The average profit per winning trades for all the winning trades in the last four years
  • ALT% : The average profit per losing trades for all the losing trades in the last four years
  • Payoff : Ratio of Avg Win / Avg Loss %
  • MWT % : Maximum Loss Trade (%)
  • MLT % : Maximum Loss Trade (%)
  • Rank : Rank of the current month average returns against all the 12 months , 1 means the stock in the current month performs best , 12 is worst
  • Seasonality Calculations : are done from the close of last trading of the previous month to current month's last trading day's close , for ex: for March Seasonality , the entry is the close of Feb last trading day's and exit is at the last trading day of Mar at close
  • backtesting period : default backtesting period is since 1990 if the stock is trading then , other wise since it's listing
Month # Wins Losses % Wins Avg% Med% AWT% ALT% Payoff MWT% MLT% Rank
Jan 6 2 4 33 -1.39 -13.65 34.20 -19.19 1.78 60.81 -24.79 6
Feb 6 3 3 50 6.29 2.42 24.27 -11.69 2.08 39.75 -20.98 2
Mar 6 2 4 33 -9.25 -9.33 18.51 -23.12 0.80 32.23 -50.44 11
Apr 6 2 4 33 0.96 -0.92 12.11 -4.61 2.63 22.42 -8.94 5
May 6 1 5 17 -9.31 -8.65 1.06 -11.38 0.09 1.06 -20.08 12
Jun 6 1 5 17 -5.62 -6.30 1.13 -6.96 0.16 1.13 -11.15 9
Jul 6 3 3 50 -2.32 -0.13 5.24 -9.87 0.53 9.82 -18.00 7
Aug 6 3 3 50 1.91 0.56 9.71 -5.90 1.65 18.10 -9.69 4
Sep 6 5 1 83 24.63 3.61 32.70 -15.72 2.08 133.90 -15.72 1
Oct 5 1 4 20 -7.39 -7.69 12.92 -12.47 1.04 12.92 -19.57 10
Nov 6 3 3 50 5.89 -1.29 20.41 -8.62 2.37 47.48 -9.09 3
Dec 6 2 4 33 -4.67 -3.89 5.48 -9.75 0.56 8.18 -16.57 8

$CANF Historical Returns in Sep

Exit Date Exit Entry Date Entry Change % P/L %
Sep 2013 5.03 Aug 2013 4.15 21.20
Sep 2014 3.27 Aug 2014 3.88 -15.72
Sep 2015 4.14 Aug 2015 1.77 133.90
Sep 2016 2.62 Aug 2016 2.48 5.65
Sep 2017 1.69 Aug 2017 1.67 1.20
Sep 2018 1.30 Aug 2018 1.28 1.56

try a 7 day trial of paststat premium features

harness the power of quantitative analysis and historical probabilities to make better investment decisions